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f Super-Resolution Networks
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SR networks build up of convolutional layers and upsampling blocks, with parameter 6.
SR networks are trained using thousands of image pairs.

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
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f Super-Resolution Networks

Many SR network architectures have been proposed.

What makes their different performance?
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f SR networks are still mysterious

Have you met these scenarios?

» Do you need multi-scale architecture or a larger receptive field?
» Does non-local attention module work as you want?

» Why different SR networks perform differently?

We lack understanding toward these questions
And also research tools

9’ ”
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/ Attribution Analysis

Why RNAN gives correct results
in the center?

Input Image

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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/ Attribution Analysis

What did RNAN notice from the input that allowed it to make the
correct prediction?

Does EDSR notice this information?

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.

Insight into the Super-Resolution Network -7-



II\ Pixel: What pixels contribute most to restoration?

BEIJING JIAOTONG UNIVERSITY

f Attribution Analysis

? Identify input features responsible for SR results.

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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f Attribution Analysis for High-level Networks
What is S(I) looking at?
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f Attribution Analysis for High-level Networks

True Label: Afghan Hound

r‘&—l
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f Attribution Analysis for High-level Networks
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f Attribution Analysis for High-level Networks

Difference from baseline
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f Attribution Analysis for High-level Networks

Difference from baseline

$i¢(f,z,a') = m X /1 ofle oz = 7)) 4,

' —0 ox;

Y(a) = &' + a(z — ')

» Generate the baseline input. In case of image, we generate all-zero image to as the baseline

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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f Attribution Analysis for High-level Networks

Difference from baseline
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» Generate the baseline input. In case of image, we generate all-zero image to as the baseline

» Compute the a-blended between the baseline input and the actual input.

alpha: 0.0 alpha: 0.2 alpha: 0.4 alpha: 0.6

)
i
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f Attribution Analysis for High-level Networks

Difference from baseline
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» Generate the baseline input. In case of image, we generate all-zero image to as the baseline
» Compute the a-blended between the baseline input and the actual input.

» Compute the gradient for all a-blended images. Then estimate the attribute from the gradient and
visualize with the original image.

Attribution mask

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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II\ Pixel: What pixels contribute most to restoration?

f Attribution Analysis for High-level Networks
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How to calculate gradient for low-level networks?

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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/ Auxiliary Principles
We introduce auxiliary principles for interpreting low-level networks:

» Interpreting local not global

SR networks can not
be interpreted globally

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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/ Auxiliary Principles

We introduce auxiliary principles for interpreting low-level networks:
» Interpreting local not global
» Interpreting hard not simple

Interpreting simple cases
can provide limited help

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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f Auxiliary Principles

We introduce auxiliary principles for interpreting low-level networks:
» Interpreting local not global
» Interpreting hard not simple

» Interpreting features not pixels

We convert the problem into whether there exists edges/textures or not,
instead of why these pixels have such intensities.

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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/ Local Attribution Maps (LAM)

SR network
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Path integrated gradients
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/" Local Attribution Maps (LAM)

We employ Path Integral Gradient

SR Network F

Feature Detector D

LAMF,D (’Y)Z L= fol @D({gf((;/)(za)) X a’}’a(g)i do Path Function y(a),« € R

Baseline Input y(0) = I’
Input y(1) =1
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/" Local Attribution Maps (LAM)

We design the Baseline Input and Path function especially for SR networks.

Blurred image as baseline input : I' = w(o) Q 1

Progressive blurring path function : y,p(a) = w(o —ao) & I

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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f Local Attribution Maps (LAM)

Baseline Input x' Integrated Gradients Attributions Softmax Output for Class: Goldfinch

Original Image

T T T T T T T
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Baseline Input x' Integrated Gradients Attributions Interpolation Constant (alpha)
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f Local Attribution Maps (LAM)

We employ Path Integral Gradient

SR Network F

Feature Detector D

LAMF,D(V)Z e fl SDTG/ (@) X 8’}/(2% do Path Function y(a),« € R
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The Gradient The weight
of interpolation determined by

path function
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f Local Attribution Maps (LAM)

Why using path integral gradient: Gradient Saturation
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/ Local Attribution Maps (LAM)
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f Local Attribution Maps (LAM)

HR Image

Insight into the Super-Resolution Network
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f Informative Areas

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
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f Informative Areas
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RankSRGAN

RRDBNet
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f SRGANSs Learn More Semantics

RankSRGAN

RRDBNet
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f Exploration with LAM
i=1Xj=119i=9jl
2n2g

We use Gini Index to indicate the range of involved G =

And propose Diffusion Index for quantitative analysis: DI = (1 — G)Xx100
\/\\ \ 1.540 2229  3.078 3.774 5340  6.066

/\\\\ \/\\
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/ Exploration with LAM
Diffusion Index vs. Network Performances.
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/ Exploration with LAM

Diffusion Index vs. Receptive Field.

Model Recpt. Field PSNR DI Remark

FSRCNN 17x17 20.30  0.797  Fully convolution network.

CARN 45x45 21.27 1.807 Residual network.

EDSR 75%75 20.96 2.977 Residual network.

MSRN 107x107 21.39 3.194 Residual network.

RRDBNet  703x703 20.96 13.417 Residual network.
"IMDN  global 2123 14.643 Global pooling.

RFDN global 21.40 13.208 Global pooling.

RCAN global 22.20 16.596 Global pooling.

RNAN global 2191 13.243 Non-local attention.

SAN global 22.55 18.642 Non-local attention.

Jinjin Gu and Chao Dong. 2021. Interpreting Super-Resolution Networks With Local Attribution
Maps. In IEEE Conference on Computer Vision and Pattern Recognition. 9199-9208.
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/ Exploration with LAM

Diffusion Index vs. Network Scale.
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f Exploration with LAM

Diffusion Index vs. Image Content.

Ranked indices
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/ Exploration with LAM

Diffusion Index vs. Image Content.
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/ Exploration with LAM

Diffusion Index vs. Image Content. "
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/" LAM Playground

L

& LocalAttributionMapsDemo.ipynb
File Edit View Insert Runtime Tools Help Last edited on November 23

o

+ Code + Text

Interpreting Super-Resolution Networks with Local Attribution Maps

<>
Jinjin Gu, Chao Dong

Project Page: https://x-lowlevel-vision.github.io/lam.html

This is an online Demo. Please follow the code and comments, step by step

First, click £i1e and then COPY you own notebook file to make sure your changes are recorded. Please turn on the colab GPU switch.

~ Import packages

[ 1] 1 import torch, cv2, os, sys, numpy as np, matplotlib.pyplot as plt
2 from PIL import Image

~ Load model codes and model files

This may take a while

Insight into the Super-Resolution Network
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Activating More Pixels in Image Super-Resolution Transformer
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II\ Pixel: What pixels contribute most to restoration?

BEIJING JIAOTONG UNIVERSITY

f How to activate more pixels?

EDSR RCAN SwinlR

LAM Attribution

SR Results

S

=2 Zal -
12.76 dB / 0.4339 13.23dB /0.4966 14.25dB /0.6003

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2022.
Activating More Pixels in Image Super-Resolution Transformer. arXiv preprint arXiv:2205.04437.
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II\ Pixel: What pixels contribute most to restoration?
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/ How to activate more pixels?
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Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2022.
Activating More Pixels in Image Super-Resolution Transformer. arXiv preprint arXiv:2205.04437.
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II\ Pixel: What pixels contribute most to restoration?
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f How to activate more pixels?
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T LT M=+ xM =4
Standard l l overlapping
window partition window partition
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Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2022.
Activating More Pixels in Image Super-Resolution Transformer. arXiv preprint arXiv:2205.04437.
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Il‘ Pixel: What pixels contribute most to restoration?

f How to activate more pixels?
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Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2022.
Activating More Pixels in Image Super-Resolution Transformer. arXiv preprint arXiv:2205.04437.
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Discovering "Semantics' in Super-Resolution Networks
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II\ Feature: Where can we find semantics in SR networks?

f Interpreting Super-Resolution Networks

No Semantics 7?7 Semantics

Traditional Methods such Low-level Vision models

such as Super-Resolution

as Interpolation methods Networks

Clear Semantics

High-level Vision models
such as Classification
networks

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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|\ Feature: Where can we find semantics in SR networks? @) A EX ALY
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f Warm up: An observation

AR

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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Il\ Feature: Where can we find semantics in SR networks? A ERAGAE
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f Warm up: An observation

CinCGN

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Feature: Where can we find semantics in SR networks?

/ Warm up: An observation

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Feature: Where can we find semantics in SR networks?

f Warm up: An observation
Input ClIlCGN BM3D

» CinCGAN can figure out the specific
degradation within its training data

» The degradation mismatch will make
the network “turn off ” its  ability

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Feature: Where can we find semantics in SR networks?

f Methodology

/ Images with
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Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Feature: Where can we find semantics in SR networks?

f Methodology
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Figure 1: Projected feature representations extracted from different layers of ResNet18 using
t-SNE. With the network deepens, the representations become more discriminative to object
categories, which clearly shows the semantics of the representations in classification.

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Feature: Where can we find semantics in SR networks?

f Observation
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Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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Feature: Where can we find semantics in SR networks?

f Observation

SR networks with global residual shows discriminability shows more obvious discriminability
to different types.

GAN-based SR networks shows more obvious discriminability.

o
- e

“Convl” “ResBlock4” “ResBlock8” “ResBlock16”

J e s = E
oo S >
oS . 3 3 -
s g =¥, =
S, o0 e oS e %
- P& *® o
oo o 2o 0 8 o oo .
5 -
rd
-
» . >
> Pe ]
“ R -
270 % %3, -
® $%eres,
: > @ <
%8,

%

(a) CHI: 0.00 & 0.00 (b) CHI: 0.00 £ 0.00 (c) CHI: 0.04 £ 0.03 (d) CHI: 3.55 + 2.42

«*e "o ¥ R
3%

R CvlayEen - ® DIV2K<clean
- “’ff! ‘ DIV2K-blur
- - T . 3 . . . S " ® DIV2K-noise
(e¢) CHI: 0.00 + 0.00 (f) CHI: 0.11 + 0.06 (g) CHI: 38.21 4+ 9.25 (h) CHI:

613.77 £ 33.40

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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Feature: Where can we find semantics in SR networks?

f Observation

SR networks with global residual shows discriminability shows more obvious discriminability to
different types.

GAN-based SR networks shows more obvious discriminability.

“Convl” “ResBlock4” “ResBlock8” “ResBlock16”
(a) CHI: 0.00 £0.00 (b) CHI: 0.01 4+ 0.00 (c) CHI: (d) CHI:

]
. X'}J

(e) CHI: 0.00 + 0.00 (f) CHI: 0.03 + 0.02 (g) CHI: 35.68 & 2.52

Insight into the Super-Resolution Network

e
e

ﬂﬂﬂﬂﬂﬂﬂ

34.00 £+ 22.00

)

234.43 4+ 30.34

(h) CHI:

626.46 4= 31.56

® DIV2K-clean
DIV2K-blur
® DIV2K-noise

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Feature: Where can we find semantics in SR networks?

o

f Inspirations
» Interpreting the Generalization of SR (low-level) Networks
» Developing degradation-adaptive Algorithms
» Disentanglement of Image Content/Degradation

» Degradation Classification/Detection

degradation
- embedding
P
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Style Modulation
e e
27 W "Y1 %
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vy} w w
Degraded Image Backbone architecture Output

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao and Chao Dong. 2021.
Discovering Distinctive" Semantics" in Super-Resolution Networks. arXiv preprint arXiv:2108.00406.
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II\ Alignment: Which method benefit to VSR Transformer?
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/ Video Super-Resolution

Video SR exploit the complementary sub-pixel information from multiple frames.

Single Image SR

Video SR

Spatial Information + Multi-frame Information

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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II\ Alignment: Which method benefit to VSR Transtformer?
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f Video Super-Resolution

Video SR exploit the complementary sub-pixel information from multiple frames.

SISR VSR

&

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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II\ Alignment: Which method benefit to VSR Transformer?
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/ Video Super-Resolution

<O SOMBIO),
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|

7

Sub-pixel Information

8 n . i

Different downsampled observations of the same object across frames provide additional
constraints/information for SR

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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II\ Alignment: Which method benefit to VSR Transformer?

/ Video Super-Resolution

Video SR exploit the complementary sub-pixel information from multiple frames.

Single Image SR

Video SR

Spatial Information + Multi-frame Information

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

/ Framework design

Existing methods can be roughly divided into sliding window-based and recurrent methods.

T ——— ~ o ——————— ~
_______ ./ “’ y
N O N\ ) |
| . .
P Alignment : Spatial- |
(|
Feature L Module N temporal !
Extraction 1 ! (eg. Optical Flow, : Fusion I
11
Ly Deformable Conv) I Transformer :
|
/l : K j I'\ K / ‘
———————— \ /7 \
N e e e e e e e e e e e N e e e e - - -
Sliding-Window Recurrent
EDVR MuCAN TDAN BRCN FRVSR RSDN BasicVSR IconVSR
Propagation Local Local Local Bidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional (coupled)
Alignment Yes (DCN) Yes (correlation) | Yes (DCN) No Yes (flow) No Yes (flow) Yes (flow)
Aggregation | Concatenate + TSA | Concatenate |Concatenate| Concatenate | Concatenate | Concatenate | Concatenate Concatenate + Refill
Upsampling Pixel-Shuffle Pixel-Shuffle | Pixel-Shuffle| Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle Pixel-Shuffle

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

/ Framework design

Existing methods can be roughly divided into sliding window-based and recurrent methods.

®

| . .
| Alignment Spatial-
Feature | Module temporal
. — : » P! Upsample
Extraction (eg. Optical Flow, Fusion
|
i Deformable Conv) Transformer
|
________ /l K j K / \—/
Sliding-Window Recurrent
EDVR MuCAN TDAN BRCN FRVSR RSDN BasicVSR IconVSR
Propagation Local Local Local Bidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional (coupled)
Alignment Yes (DCN) Yes (correlation) | Yes (DCN) No Yes (flow) No Yes (flow) Yes (flow)
Aggregation | Concatenate + TSA | Concatenate |Concatenate| Concatenate | Concatenate | Concatenate | Concatenate | Concatenate + Refill
Upsampling Pixel-Shuffie Pixel-Shuffle  |Pixel-Shuffle| Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle Pixel-Shuffle

Insight into the Super-Resolution Network

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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Alignment: Which method benefit to VSR Transformer?

f Framework design

Existing methods can be roughly divided into sliding window-based and recurrent methods.

®

Vv N [ N ()
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I Alignment Spatial-
Feature | Module temporal
: — . > P! Upsample
Extraction (eg. Optical Flow, Fusion
|
| Deformable Conv) Transformer
|
________ /l K j k / \—/
Sliding-Window Recurrent
EDVR MuCAN TDAN BRCN FRVSR RSDN BasicVSR IconVSR
Propagation Local Local Local Bidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional (coupled)
Alignment Yes (DCN) Yes (correlation) | Yes (DCN) No Yes (flow) No Yes (flow) Yes (flow)
Aggregation | Concatenate + TSA | Concatenate |Concatenate| Concatenate | Concatenate | Concatenate | Concatenate Concatenate + Refill
Upsampling Pixel-Shuffle Pixel-Shuffle | Pixel-Shuffle| Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle Pixel-Shuffle

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

f Framework design

Existing methods can be roughly divided into sliding window-based and recurrent methods.

®

Vv N [ N ()
1 0 .
I Alignment Spatial-
Feature | Module temporal
: — . > P! Upsample
Extraction (eg. Optical Flow, Fusion
|
| Deformable Conv) Transformer
|
________ /l K j k / \—/
Sliding-Window Recurrent
EDVR MuCAN TDAN BRCN FRVSR RSDN BasicVSR IconVSR
Propagation Local Local Local Bidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional (coupled)
Alignment Yes (DCN) Yes (correlation) | Yes (DCN) No Yes (flow) No Yes (flow) Yes (flow)
Aggregation | Concatenate + TSA | Concatenate |Concatenate| Concatenate | Concatenate | Concatenate | Concatenate Concatenate + Refill
Upsampling Pixel-Shuffle Pixel-Shuffle | Pixel-Shuffle| Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle | Pixel-Shuffle Pixel-Shuffle

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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II\ Alignment: Which method benefit to VSR Transtformer?

f Alignment
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Why we should conduct alignment in a VSR convolutional network.

L R

Insight into the Super-Resolution Network

CNN s have the Locality Inductive Bias.

CNN s cannot directly process spatially misalignment.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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II\ Alignment: Which method benefit to VSR Transtformer?

f Alignment

>~
s

\v

&

o

UNIVER

FESN
DN

% S, '3
4
D/ )
® £ 7
%, &,
Q S
orons S

BEIJING JIAOTON

&0

ITY

[
@
(2]

Why we should conduct alignment in a VSR convolutional network.

L R

e

Warp

Insight into the Super-Resolution Network

CNN s have the Locality Inductive Bias.

CNN s cannot directly process spatially misalignment.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
-09-



II\ Alignment: Which method benefit to VSR Transformer? }I YR X EAE
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/ Alignment

Alignment is an important module and is the core of VSR method development.
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II\ Alignment: Which method benefit to VSR Transtformer?

/ Alignment

Alignment is an important module and is the core of VSR method development.
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f Image Restoration Transformers

Transformers refresh the state-of-the-art in Network designs.
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f Image Restoration Transformers
Transformers:
» Treat the input signal as tokens. In image restoration, one pixel is one token.
» Using self-attention to process spatial information, instead of convolutions.
» Self-attention is efficient for spatially long-term distributed elements.

» Do not assume the locality inductive bias.
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|
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Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
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f Image Restoration Transformers
Transformers:

» Treat the input signal as tokens. In image restoration, one pixel is one token.
» Using self-attention to process spatial information, instead of convolutions.
» Self-attention is efficient for spatially long-term distributed elements.

»> Do not assume the locality inductive bias.
4 = ¢ > - 4> CNNs' locality inductive bias

e v B

oy 2 cn D

Luo, Wenjie, et al. “Understanding the Effective Receptive

Field in Deep Convolutional Neural Networks.” NIPS2016.
Transformer CNNs
Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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/ Video Restoration Transformers
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Alignment: Which method benefit to VSR Transformer?

f Rethinking

Question 1:

» The VSR model needs alignment because CNN has locality inductive bias.

» Transformers have no locality inductive bias.

» Do we still need alignment for VSR Transformers?

9’ '.

N\

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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II\ Alignment: Which method benefit to VSR Transformer?

, Rethinking

Question 1:

» The VSR model needs alignment because CNN has locality inductive bias.
» Transformers have no locality inductive bias.

» Do we still need alignment for VSR Transformers?
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Alignment: Which method benefit to VSR Transformer?

f Rethinking

Question 1:

» The VSR model needs alignment because CNN has locality inductive bias.
» Transformers have no locality inductive bias.

» Do we still need alignment for VSR Transformers?
Question 2:

» If we do not need alignment in VSR Transformer,
» What will happen if we use alignment in it?
v’ 'S

N\

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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II\ Alignment: Which method benefit to VSR Transformer?

f Preliminary Settings

We build the basic VSR Transformer model using multi-frame self-attention blocks. This 1s an
example basic on the sliding window strategy.
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f Preliminary Settings

We build the basic VSR Transformer model using multi-frame self-attention blocks. This 1s an
example basic on the sliding window strategy.
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Alignment: Which method benefit to VSR Transformer?

f Preliminary Settings

We build the basic VSR Transformer model using multi-frame self-attention blocks. This 1s an
example basic on the sliding window strategy.

Layer | Layer I+1

A local window to
perform self-attention

A patch

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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/ Preliminary Settings

Flow map

Alignment Methods:

1. Image Alignment.

[ Flow estimation ]

[lt+1 — 14| Ii I 1 — I

It+1

Warp/Resampling supporting
frames using flow

[ Obtain aligned frames ] No MC MC

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

f Preliminary Settings

, Flow estimation
Alignment Methods:
1. Image Alignment.
2. Feature Alignment. Extract deep features for
supporting frames

Warp/Resampling
supporting frames using flow

[ Obtain alighed frames ]

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Preliminary Settings

fi—1 Si—i—1 9gi

. warpin
Alignment Methods: previous LN LR
feature feature

1. Image Alignment.

2. Feature Alignment. g Wwarped
feature

3. Flow Guided Deformable Convolution.
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/ Preliminary Settings

Alignment Methods:
1. Image Alignment.
2. Feature Alignment.

|| 1 g "
3. Flow Guided Deformable Convolution. _.‘ k We don't need it

4. No Alignment.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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f Preliminary Settings

Dataset and Benchmarks:

» Setting One:
Training: REDS dataset, 266 sequences
Testing: READS4 test sequences

» Setting Two:
Training: Vimeo-90K dataset, 64,612 sequences
Testing:
1. Vimeo-90K testing set, 7,824 video sequences

2. Vid4 testing set, 4 video sequences

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Preliminary Settings

The distribution of movement:

Large Movement Small Movement
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f Rethinking

Question 1:

» The VSR model needs alignment because CNN has locality inductive bias.

» Transformers have no locality inductive bias.

» Do we still need alignment for VSR Transformers?

o’ ”

N

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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f Does alignment benefit VSR Transformers?

Differeces in Mean Square Error

Differences in pixel processing effects for different movement conditions.

(a) VSR Transformer (window size 8)

No alignment i The window size of
is better ﬁ| VSR Transformer

Alignment
4 is better l

0 5 10 15 20 25 30
Pixel Movement Magnitude

Insight into the Super-Resolution Network

(| Transformer with 8x8 attention window:
i = O ] Only pixels inside the window can have
' | direct interactions.
| ] Can not process movement lager than the
" | window size.
L - CEEEEENES D

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Does alignment benefit VSR Transformers?

Differences in pixel processing effects for different movement conditions.

(a) VSR Transformer (window size 8)

REDS

_ le6 1.0
o 6 {No alignment i The window size of 2.5 ;
B is better ﬁ| VSR Transformer
o 4 - 0.8
< 2.0 4
g‘ 2 v >
v = L 0.6 =
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tE Alignment
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Pixel Movement Magnitude Pixel Movement Magnitude
Exp. . Vimeo90K-T REDS4
Index | Method Alignment Remark PSNR  SSIM | PSNR  SSIM
1 VSR-CNN Image alignment Finetune flow 36.13 0.9342 29.81 0.8541
2 VSR-CNN No alignment 36.24 0.9359 28.95  0.8280
3 VSR Transformer | Image alignment Fix flow 36.87 0.9429 30.25  0.8637
4 VSR Transformer | Image alignment Finetune flow 37.44*  0.9472* 30.43  0.8677
5 VSR Transformer | Feature alignment  Finetune flow 37.36 0.9468 30.74  0.8740
6 VSR Transformer | No alignment Window size 8 37.43 0.9470 30.56  0.8696
7 VSR Transformer | No alignment Window size 16 37.46 0.9474 30.81  0.8745

Insight into the Super-Resolution Network
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II\ Alignment: Which method benefit to VSR Transformer?

f Does alignment benefit VSR Transformers?

Differences in pixel processing effects for different movement conditions.

(a) VSR Transformer (window size 8) (b) VSR Transformer (window size 12)

No alignment i The window size of
is better ﬁ| VSR Transformer

n
1 1} No alignment is better

I The window size of
Alignment is better {LI VSR Transformer
7 |

Alignment
is better l

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Pixel Movement Magnitude Pixel Movement Magnitude

Differeces in Mean Square Error
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f Does alignment benefit VSR Transformers?

Differences in pixel processing effects for different movement conditions.

(a) VSR Transformer (window size 8) (b) VSR Transformer (window size 12) (c) VSR Transformer (feature alignment)
§ 6 {No alignment i The window size of 6 i i i 2- i No alianment is better
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f Does alignment benefit VSR Transformers?

Conclusions:

.

The VSR Transformer can handle misalignment within a certain range, and using alignment at
this range will bring negative effects.
This range is closely related to the window size of the VSR Transformer.

Alignment 1s necessary for motions beyond the VSR Transformer’s processing range.

Do we still need alignment for VSR Transformers?

To a certain extent, it is not necessary. P

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Does Transformer implicitly track the motion between unaligned frames?

Can an alignment-like function be done inside the VSR Transformers?

VSR Transforme
No Alignment

VSR CNN
Image Alignment

VSR CNN
HR Frame and No Alignment

the Attribution Target Window

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

f Rethinking

Question 2:

» If we do not need alignment in VSR Transformer,
» What will happen if we use alignment in it?
v’ ’.

N

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Do alignment methods have negative effects? And Why?

Exp. . Vimeo90K-T REDS4
Index. | Method Alignment Remark PSNR  SSIM | PSNR  SSIM
1 VSR-CNN Image alignment Finetune flow 36.13 0.9342 29.81 0.8541
2 VSR-CNN No alignment 36.24 0.9359 28.95  0.8280
3 VSR Transformer | Image alignment Fix flow 36.87  0.9429 | 30.25 0.8637
4 VSR Transformer | Image alignment Finetune flow 37.44*  0.9472* | 30.43  0.8677
5 VSR Transformer | Feature alignment Finetune flow 37.36  0.9468 30.74  0.8740
6 VSR Transformer | No alignment Window size 8 37.43 0.9470 30.56 0.8696
7 VSR Transformer | No alignment Window size 16 37.46 0.9474 30.81 0.8745

Two Interesting Observation:

1. Optimizing the flow estimator during training will bring better results. Because the flow
estimator at this time learns the optimized flow for VSR.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

f Do alignment methods have negative effects? And Why?

Exp. : Vimeo90K-T REDS4

Index. | Method Alignment Remark PSNR  SSIM | PSNR  SSIM
1 VSR-CNN Image alignment Finetune flow 36.13 0.9342 29.81 0.8541
2 VSR-CNN No alignment 36.24 0.9359 28.95  0.8280
3 VSR Transformer | Image alignment Fix flow 36.87 0.9429 30.25 0.8637
4 VSR Transformer | Image alignment Finetune flow 37.44*  0.9472* 3043  0.8677
5 VSR Transformer | Feature alignment  Finetune flow 37.36 0.9468 30.74  0.8740
6 VSR Transformer | No alignment Window size 8 37.43 0.9470 30.56 0.8696
7 VSR Transformer | No alignment Window size 16 37.46 0.9474 30.81 0.8745

Two Interesting Observation:

1. Optimizing the flow estimator during training will bring better results. Because the flow

estimator at this time learns the optimized flow for VSR.
2.  We observe different results on Vimeo-90K dataset: image-alignment with flow fine-tuning is
almost identical to no alignment.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Do alignment methods have negative effects? And Why?

PNSR

We observe different results on Vimeo-90K dataset: image-alignment with flow fine-tuning 1s almost
identical to no alignment.
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f Do alignment methods have negative effects? And Why?

At least two reasons:

1. The flow is noisy. And this noise introduces uncertainty to the mode between frames. And harm
the performance.
2. The resampling operation also causes the sub-pixel information loss.

Alignment Method Position Resampling | Params. REDS4
i No Ali. Img. Ali. Feat. Ali. FGDC | Img. Feat. | BI NN (M) PSNR / SSIM
1 v 12.9 30.92 / 0.8759
2 v v v 12.9 30.84 / 0.8752
3 v v v 14.8 31.06 / 0.8792
4 v v v 14.8 31.11 / 0.8801
5 v v 16.1 31.11 / 0.8804

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f Do alignment methods have negative effects? And Why?

At least two reasons:

1. The flow is noisy. And this noise introduces uncertainty to the mode between frames. And harm
the performance.

2. The resampling operation also causes the sub-pixel information loss.

” Alignment Method Position Resampling | Params. REDS4
No Ali. Img. Ali. Feat. Ali. FGDC | Img. Feat. | BI NN (M) PSNR / SSIM

1 v 12.9 30.92 / 0.8759
2 v | % v 12.9 | 30.84 / 0.8752
3 v o ' v v 14.8 31.06 / 0.8792
4 X% B v v 14.8 | 31.11 / 0.8801
5 v Vv A 16.1 31.11 / 0.8804

Insight into the Super-Resolution Network

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
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f Does alignment benefit VSR Transformers?

Conclusions:
1. The VSR Transformer can handle misalignment within a certain range, and using alignment at

this range will bring negative effects.

2. This range is closely related to the window size of the VSR Transformer.

3. Alignment is necessary for motions beyond the VSR Transformer’s processing range.

Why alignment hurts VSR Transformer?

1. Inaccurate flow

2. Resampling Operation

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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f How to do better?

We want better Transformer:

1. Increasing the Transformer’s window size (Too expensive)

2. A new alignment method.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing

Systems.
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Alignment: Which method benefit to VSR Transformer?

f How to do better?

We want better Transformer:

1. Increasing the Transformer’s window size (Too expensive)

2. A new alignment method.

We propose Patch Alignment, that:
1.  Only rely on approximate flow information, ignoring flow inaccuracies.
2. Cut and move the target position as a whole without changing the relative relationship between

pixels.

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
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f Patch Alignment

We propose Patch Alignment, that:

1.  Only rely on approximate flow information, ignoring flow inaccuracies.
2. Cut and move the target position as a whole without changing the relative relationship between

pixels.

o] ®

ot

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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f Patch Alignment

We propose Patch Alignment, that:

1.  Only rely on approximate flow information, ignoring flow inaccuracies.

2. Cut and move the target position as a whole without changing the relative relationship between

pixels.

Reference Frame Image Alignment Patch Alignment

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Alignment: Which method benefit to VSR Transformer?

f Experimental Results

Compare to other alignment methods:

” Alignment Method Position Resampling | Params. REDS4
No Ali. Img. Ali. Feat. Ali. FGDC | Img. Feat. | BI NN (M) PSNR / SSIM
1 v 12.9 30.92 / 0.8759
2 v v v 12.9 30.84 / 0.8752
3 v v v 14.8 31.06 / 0.8792
4 v v v 14.8 | 31.11 / 0.8801
5! v v 16.1 31.11 / 0.8804
Position Resampling REDS4
Method | o Feat. | BIL NN | PSNR  SSIM
v v 31.11  0.8800
Patch ~ v
Alignment A SLORT L
v v 31.17  0.8810

Insight into the Super-Resolution Network

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
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f Experimental Results
Compare to state-of-the-art:

Method Frames Params REDS4 Vimeo-90K-T Vid4
REDS/Vimeo (M) PSNR SSIM | PSNR SSIM | PSNR  SSIM
Bicubic -/- - 26.14  0.7292 | 31.32 0.8684 | 23.78  0.6347
RCAN -/- - 28.78  0.8200 | 35.35 0.9251 | 25.46 0.7395
SwinlR -/- 11.9 29.05 0.8269 | 35.67 0.9287 | 25.68 0.7491
TOFlow 5/7 - 2798 0.7990 | 33.08 0.9054 | 25.89 0.7651
DUF /7 5.8 28.63  0.8251 - - 27.33  0.8319
PFNL 7/7 3.0 29.63 0.8502 | 36.14 0.9363 | 26.73  0.8029
RBPN /7 12.2 30.09 0.8590 | 37.07 0.9435 | 27.12 0.8180
EDVR 5/7 20.6 31.09 0.8800 | 37.61 0.9489 | 27.35 0.8264
MuCAN 5/7 - 30.88  0.8750 | 37.32 0.9465 - -
VSR-T 5/7 32.6 31.19 0.8815 | 37.71 0.9494 | 27.36  0.8258
PSRT-sliding 5/- 14.8 31.32 0.8834 - - - -
VRT 6/- 30.7 31.60 0.8888 - - - -
PSRT-recurrent 6/- 10.8 31.88  0.8964 - - - -
BasicVSR 15/14 6.3 31.42  0.8909 | 37.18 0.9450 | 27.24 0.8251
IconVSR 15/14 8.7 31.67 0.8948 | 37.47 0.9476 | 27.39  0.8279
BasicVSR++ 30/14 7.3 32.39 0.9069 | 37.79 0.9500 | 27.79  0.8400
VRT 16/7 35.6 32.19  0.9006 | 38.20 0.9530 | 27.93 0.8425
RVRT 30/14 10.8 32.75 09113 | 38.15 0.9527 | 27.99 0.8462
PSRT-recurrent 16/14 13.4 32.72 0.9106 | 38.27 0.9536 | 28.07 0.8485

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
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f Experimental Results
Compare to state-of-the-art:

Nearest EDVR [44] BasicVSR [4] IconVSR [4]

Frame 043, Clip 000, REDS VRT [22] BasicVSR++ [6]

Nearest EDVR [44] BasicVSR [4] IconVSR [4]

Frame 005, Clip 011, REDS VRT [22] BasicVSR++ [6] Ours GT

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
Systems.
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Nearest EDVR [44] BasicVSR [4] IconVSR [4]

WrxdrY
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f Experimental Results
Compare to state-of-the-art:

VRT [22] BasicVSR++ [6] Ours

Nearest EDVR [44] BasicVSR [4] IconVSR [4]
Frame 014, Clip city, Vid4 VRT [22] BasicVSR++ [6] Ours GT

Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao Wang, Yujiu Yang and Chao Dong. 2022. Rethinking
Alignment in Video Super-Resolution Transformers. In Advances in Neural Information Processing
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f Experimental Results
Compare to state-of-the-art:

32.5 4
32.0 -
(a'd
2 31.5 1
oo
31.0 4
30.5 - —— 16 frames training
— 30 frames training
0 100000 200000 300000 400000 500000 600000

Iteration
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